Monitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model
نویسندگان
چکیده
Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches can be applied to monitor root-zone soil moisture in agricultural landscapes. Water and Energy Balance (WEB) SVAT modeling is based on forcing a prognostic root-zone water balance model with observed rainfall and predicted evapotranspiration. In contrast, thermal Remote Sensing (RS) observations of surface radiometric temperature (TR) are integrated into purely diagnostic RS-SVAT models to predict the onset of vegetation water stress. While RS-SVAT models do not explicitly monitor soil moisture, they can be used in the calculation of thermal-based proxy variables for the availability of soil water in the root zone. Using four growing seasons (2001 to 2004) of profile soil moisture, micro-meteorology, and surface radiometric temperature measurements at the United States Department of Agriculture (USDA) Optimizing Production Inputs for Economic and Environmental Enhancements (OPE) study site in Beltsville, MD, prospects for improving WEB-SVAT root-zone soil water predictions via the assimilation of diagnostic RS-SVAT soil moisture proxy information are examined. Results illustrate the potential advantages of such an assimilation approach relative to the competing approach of directly assimilating TR measurements. Since TR measurements used in the analysis are tower-based (and not obtained from a remote platform), a sensitivity analysis demonstrates the potential impact of remote sensing limitations on the value of the RS-SVAT proxy. Overall, results support a potential role for RS-SVAT modeling strategies in improving WEB-SVAT model characterization of root-zone soil moisture. Published by Elsevier Inc.
منابع مشابه
Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals
The upcoming deployment of satellite-based microwave sensors designed specifically to retrieve surface soil moisture represents an important milestone in efforts to develop hydrologic applications for remote sensing observations. However, typical measurement depths of microwave-based soil moisture retrievals are generally considered too shallow (top 2–5 cm of the soil column) for many important...
متن کاملModeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04
Soil moisture status in the root zone is an important component of the water cycle at all spatial scales (e.g., point, field, catchment, watershed, and region). In this study, the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch Experimental Watershed (WGEW) in Arizona was investigated during the Soil Moisture Experiment 2004 (SMEX04). Root zone soil moisture was estimat...
متن کاملBenchmarking a Soil Moisture Data Assimilation System for Agricultural Drought Monitoring
Agricultural drought is defined as a shortage of moisture in the root zone of plants. Recently available satellite-based remote sensing data have accelerated development of drought early warning system by providing continuous soil moisture information in space and time. Nonetheless, the shallow sensing depth (top few cm) and uncertain accuracy of currentlyavailable satellite soil moisture retri...
متن کاملRoot Zone Soil Moisture Assessment Using Remote Sensing and Vadose Zone Modeling
Soil moisture is an important hydrologic state variable critical to successful hydroclimatic and environmental predictions. Soil moisture varies both in space and time because of spatio-temporal variations in precipitation, soil properties, topographic features, and vegetation characteristics. In recent years, airand space-borne remote sensing campaigns have successfully demonstrated the use of...
متن کاملSoil Moisture Remote Sensing: State-of-the-Science
This is an update to the special section “Remote Sensing for Vadose Zone Hydrology—A Synthesis from the Vantage Point” [Vadose Zone Journal 12(3)]. Satellites (e.g., Soil Moisture Active Passive [SMAP] and Soil Moisture and Ocean Salinity [SMOS]) using passive microwave techniques, in particular at L-band frequency, have shown good promise for global mapping of near-surface (0–5-cm) soil moistu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008